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Machine learning analysis and risk 
prediction of weather‑sensitive 
mortality related to cardiovascular 
disease during summer in Tokyo, 
Japan
Yukitaka Ohashi 1*, Tomohiko Ihara 2, Kazutaka Oka 3, Yuya Takane 4 & Yukihiro Kikegawa 5

Climate‑sensitive diseases developing from heat or cold stress threaten human health. Therefore, 
the future health risk induced by climate change and the aging of society need to be assessed. 
We developed a prediction model for mortality due to cardiovascular diseases such as myocardial 
infarction and cerebral infarction, which are weather or climate sensitive, using machine learning (ML) 
techniques. We evaluated the daily mortality of ischaemic heart disease (IHD) and cerebrovascular 
disease (CEV) in Tokyo and Osaka City, Japan, during summer. The significance of delayed effects of 
daily maximum temperature and other weather elements on mortality was previously demonstrated 
using a distributed lag nonlinear model. We conducted ML by a LightGBM algorithm that included 
specified lag days, with several temperature‑ and air pressure‑related elements, to assess the 
respective mortality risks for IHD and CEV, based on training and test data for summer 2010–2019. 
These models were used to evaluate the effect of climate change on the risk for IHD mortality in Tokyo 
by applying transfer learning (TL). ML with TL predicted that the daily IHD mortality risk in Tokyo 
would averagely increase by 29% and 35% at the 95th and 99th percentiles, respectively, using a high‑
level warming‑climate scenario in 2045–2055, compared to the risk simulated using ML in 2009–2019.

Weather- or climate-sensitive diseases developing from heat or cold stress threaten human health  worldwide1–3. 
Serious increases in temperature owing to global warming and urban heat islands threaten human health dur-
ing the summer  season4–6. Higher risks for cardiovascular, cerebrovascular, and respiratory diseases as well as 
heatstroke in summer are caused by country- or urban-scale increases in  temperature7–9. A meta-analysis10 
from worldwide research revealed that cardiovascular mortality in people aged 65 + years increased by 3.44% 
(95% confidence interval [CI] 3.10–3.78) for each 1 °C increase in temperature, and cerebrovascular mortality 
increased by 1.40% (95% CI 0.06–2.75).

An estimated 17.9 million people died from cardiovascular diseases in 2019, accounting for 32% of all global 
 deaths11. The future health risk induced by climate change and the aging society in many countries must be 
urgently assessed to protect human health. Prediction of the mortality or morbidity of cardiovascular diseases is 
important for assessing the risk to vulnerable people and can been performed using machine learning (ML)12–14. 
ML algorithms have better performance than statistical models, such as the generalised linear model (GLM) and 
generalised additive model (GAM), in predictions of cardiovascular  mortality15.

Japan’s super-aging society is unprecedented, and by 2050, it is estimated that the populations of people aged 
65 + and 75 + years will represent 37.7% and 23.7%, respectively, of the total  population16 (Fig. S1). In Japan, 
cardiac and cerebrovascular disease deaths, most of which occur among older people, accounted for 22.7% of 
all deaths in 2019, and were second to malignant neoplasm as the most frequent (27.3%) cause of  death17. The 
Japanese government has reported that the number of patients hospitalised owing to cardiovascular diseases in 
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2035 will be twofold that in 2005, and the prevalences of cardiac and cerebrovascular diseases are estimated to 
increase 2.15- and 2.05-fold, respectively, by  205518. ML techniques can be used to address summer  heatstroke19,20, 
although no study has applied these techniques to the mortality or morbidity risk for cardiovascular diseases 
related to summer weather.

Quantitatively evaluating cardiovascular disease risk is also important to future society; hence, we sought 
to evaluate the future risk using an ML approach. In this study, we focused on cardiovascular diseases such as 
myocardial infarction and cerebral infarction, which are sensitive to weather or  climate21–23 and predicted the 
mortality of these diseases in large Japanese cities using an ML technique and the data on weather parameters.

Results
We evaluated ischaemic heart disease (IHD) and cerebrovascular disease (CEV) from all cardiovascular diseases 
(see “Methods”). The summer IHD and CEV mortalities in Tokyo’s 23 wards (hereafter, Tokyo) and Osaka City 
(hereafter, Osaka) were analysed for July–August of summer months during 2009–2019. The populations of 
Tokyo and Osaka in 2015 were approximately 9.3 million and 2.7 million, respectively.

Figure 1 gives basic information on the daily maximum temperature (Tmax) and daily relative risk (DRR; 
normalised by yearly mean deaths in July–August) of IHD and CEV in July–August. The Tmax in Tokyo was 
approximately 1°C lower than that in Osaka at both of the 50th and 95th percentiles (Fig. 1a). While the DRRs 
of IHD and CEV at the 50th percentile were almost identical in Tokyo and Osaka, those at the 90th percentile 
in Tokyo were 1.14- to 1.19-fold lower than in Osaka (Fig. 1b,c). For example, the mortality of IHD and CEV 
in people of ages 65 + years in Tokyo accounted for 85.5% and 88.0% of the total in 2009–2019, of which 76.5% 
and 83.3% were in people of ages 75 + years. Hence, we additionally focused on people aged 65 + and 75 + years, 
because the risk for heat-related morbidity or mortality from cardiovascular diseases is higher in older  people10.

Lag effect of weather exposure on mortality risk
The significance of delayed effects of daily weather conditions on mortality has been previously investigated 
using a distributed lag nonlinear model (DLNM)24 (see “Methods”). The results showed that the DRR of IHD 
increased rapidly with Tmax and daily mean water vapor pressure (Vap); Tmax and Vap exceeding 30 °C and 24 hPa, 
respectively, caused an exponential increase in IHD mortality risk in Tokyo (Fig. 2a,b; Fig. S2a–c for Osaka). In 
addition, the DRR remained higher with a higher Tmax or Vap delayed for > 1 week. Although the DRR of the IHD 
response to daily mean air pressure (Pres) was less sensitive than that to Tmax and Vap (Fig. 2c), the mortality risk 
persisted for > 10 days longer than those of Tmax and Vap, with a higher Pres.

Figure 1.  Frequency of (a) Tmax, (b) DRR of IHD, and (c) DRR of CEV during 2009–2019 in Tokyo’s 23 wards 
and Osaka City. Tmax at the 50th and 95th percentiles and DRR at the 50th and 90th percentiles are shown in the 
respective graphs. Tmax daily maximum temperature, DRR daily relative risk, IHD ischaemic heart disease, CEV 
cerebrovascular disease.
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The response of the CEV DRR to weather exposure was significantly weaker than that of IHD (Fig. 2d–f). 
However, the overall risk for CEV, which was integrated for all lag effects, was present for weather elements 
(Fig. S3).

Table 1 summarises the set of lag days used for the subsequent ML, based on the DLNM results. Here, lag 
days were specified for people aged all, aged 65 + years, and aged 75 + years (Fig. S4–S7 from DLNM results). If 
the lag effect on the mortality risk with weather exposure was longer than the maximum of 14 days used in the 
DLNM analyses, it was assigned as 14 days in the ML features. The existence of lag days suggests that weather 

Figure 2.  Results of lag analysis using the DLNM in Tokyo. (a–c) DRR of IHD and (d–f) DRR of CEV for (a,d) 
Tmax, (b,e) Vap, and (c,f) Pres. Each panel indicates (left) weather variables versus DRR at lags of 0, 3, 6 days 
and (right) lag days versus DRR at the lower 5th, 50th, and upper 5th (95th) percentiles of weather variables. 
Tmax daily maximum temperature; Vap, daily mean water vapor pressure; Pres, daily mean air pressure; DLNM, 
distributed lag nonlinear model; DRR, daily relative risk; IHD, ischaemic heart disease; CEV, cerebrovascular 
disease.
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features on previous days should be incorporated into ML (e.g., Tmax on the previous 1 day, 2 days, …, and 8 days 
for the DRR of IHD in Tokyo). Therefore, based on the data in Table 1, the Tmax, Vap, and Pres on previous days 
were added to the weather features used in ML implementation (Table 2).

Mortality hindcast with weather features
A mortality hindcast for 2009–2019 was performed using ML techniques with Boruta SHapley Additive exPlana-
tions (BorutaSHAP)25 for feature selection (see “Methods”). A gradient boosting algorithm (LightGBM)26 was 
adopted as the ML method in this study (see “Methods”). The inputted initial features are listed in Table 2. The 
temperature-related features include Tmax on the day (Tmax), Tmax n days ago (TmaxPre n), the difference from n 
days ago (TmaxDiffPre n), and accumulated high temperature (AcTmax30) defined by:

Here, i represents the target date. Vapor- and air pressure-related features, daily rainfall, and the day of week 
were also used as initially inputted features (Table 2).

Figure 3 shows the results of ML and the selected features for Tokyo IHD mortality at all ages (Fig. S8a,b for 
ages 65 + years and 75 + years). In the BorutaSHAP analysis, Tmax, TmaxPre2, and AcTmax30 were selected from 
among the 37 features important for reproducing the DRR of IHD in Tokyo during the summer of each year 
(Fig. 3a-1). The model learning using these features related to temperature accurately reproduced the increases 
and decreases of the DRR in each year (Fig. 3a-2). Quantitative evaluation between the observed and simulated 
DRR yielded a root mean square error (RMSE) of 0.369, mean absolute error (MAE) of 0.290, and their ratio 
(RMSE/MAE) of 1.269.

The daily instance of the  SHAP26 value can explain the quantitative attribution of a selected feature. The 
positive values of SHAP, which indicate an increased DRR, increased rapidly when TmaxPre2 or Tmax exceeded 
approximately 34 °C (left and centre panels in Fig. 3a-3). However, an increase in AcTmax30 decreased the SHAP 
value (right panel in Fig. 3a-3), and the DRR of IHD was less likely to increase if AcTmax30 exceeded 130 °C. 
Meanwhile, ML implemented for Osaka selected only Tmax as an important feature for DRR, and the RMSE and 
MAE between the actual and simulated DRR were larger than those of Tokyo (Fig. S8c–e).

Optimal features for the DRR of CEV in Tokyo were not temperature-related features but rather air pressure-
related PresDiffPre1 and PresPre14 (Fig. 3b-1). Although the reproduced DRR of CEV (Fig. 3b-2) indicated an 
RMSE of 0.326, MAE of 0.264, and RMSE/MAE of 1.236, which were nearly equivalent to those of the aforemen-
tioned IHD, the responses of SHAP to the two pressure-related features were less sensitive than those of IHD 
(Fig. 3b-3). The simulated DRR for people aged 65 + years was also not related to the selected features (Fig. S9a,b) 
whereas the ML for DRR of people aged 75 + years failed to select important features via BorutaSHAP. Hence, it 
was difficult to perform ML prediction of CEV mortality in association with weather changes in Tokyo and Osaka.

(1)AcTmax30 =

∑

i

(

Tmax,i − 30.0
)

Table 1.  Lag days (numerals) of IHD and CEV mortality risks with weather exposure, determined by DLNM 
analyses. Representative results are shown for all ages, ages 65 + years, and ages 75 + years. Tmax daily maximum 
temperature, Vap daily mean water vapor pressure, Pres daily mean air pressure, DLNM distributed lag 
nonlinear model, DRR daily relative risk, IHD ischaemic heart disease, CEV cerebrovascular disease.

Daily weather elements

Tokyo’s 23 wards Osaka City

All ages Ages 65 + Ages 75 + All ages Ages 65 + Ages 75 + 

IHD CEV IHD CEV IHD CEV IHD CEV IHD CEV IHD CEV

Tmax 8 8 8 8 8 8 8 14 8 14 7 14

Vap 9 14 9 14 9 14 10 14 11 14 12 14

Pres 14 14 14 14 14 8 14 14 14 14 14 14

Table 2.  Inputted initial features in ML and feature selection using BorutaSHAP. BorutaSHAP, Boruta 
SHapley Additive exPlanations.

Initially inputted feature variables Remarks

Tmax

Tmax, TmaxPre2,…, TmaxPre**
TmaxDiffPre1,…, TmaxDiffPre**
AcTmax30

Tmax : Daily maximum temperature (°C)
Pre** : Previous ** day specified by DLNM (Table 1)
DiffPre** : Difference from previous ** day specified by DLNM (Table 1)
AcTmax30 : Accumulated high temperature (°C) defined by 

∑

i

(

Tmax,i − 30.0
)

i : target date
Vap : Daily mean vapor pressure (hPa)
Pres : Daily mean air pressure (hPa)
Rain : Daily accumulated rainfall (mm)
DOW : Day of week

Vap Vap, VapPre2,…,VapPre**
VapDiffPre1,…, VapDiffPre**

Pres Pres, PresPre2,…, PresPre**
PresDiffPre1 , … , PresDiffPre**

Others Rain
DOW
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Future mortality risk
The sensitivity of IHD mortality risk to temperature-related features enabled estimation of changes in mortal-
ity risk caused by the hotter summers expected in the near future. Hence, the IHD mortality risk in Tokyo was 

Figure 3.  ML hindcast of (a) IHD and (b) CEV mortality during summer in Tokyo (2009–2019). (1) Important 
features selected using BorutaSHAP, (2) comparison of the simulated and actual DRR, and (3) relationships 
between SHAP values and the selected important features. ML, machine learning; BorutaSHAP, Boruta SHapley 
Additive exPlanations; DRR, daily relative risk; IHD, ischaemic heart disease; CEV, cerebrovascular disease; 
RMSE, root mean square error; MAE, mean absolute error.
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evaluated with a sufficiently large population to avoid uncertainty. However, with a model trained using rare sam-
ples with a higher Tmax and higher DRR in the present era, it is difficult to predict unknown or little-experienced 
future warming influences on DRR. Therefore, we used a resampling architecture (see “Methods”), padding the 
rare samples to balance their appearance prior to executing ML, and transfer learning (TL) architecture (see 
“Methods”) for extrapolation from the past training data, in future risk estimations.

Figure 4 shows the effect of climate change over the next 20–30 years on Tokyo IHD mortality in people aged 
75 + years (Fig. S10 for people aged 65 + years), which is expected to increase (Fig. S1). ML based on a model 
learned using the 2009–2019 dataset with the three important features (Tmax, TmaxPre2, and AcTmax30) was per-
formed using future climate data for 2045–2055, predicted by the three global climate models: MRI-CGCM3 
(Fig. 4a), MIROC5 (Fig. 4b), and GFDL-CM3 (Fig. 4c) under the RPC8.5 scenario from the NARO climate 
projection scenario  dataset27 (see “Methods”). The temperatures predicted by the three models are known as 
the lowest (MRI-CGCM3), middle (MIROC5), and highest (GFDL-CM3) increasing tendencies from the pre-
sent period (Fig. S10). Comparison with the DRR in 2009–2019 (the lower panels in Fig. 4) showed that each 
percentile of the estimated future DRR (approximately 30 years later) was higher than the present percentile 
for all of the climate models. The smallest increase in the future era was estimated to be 1.16-fold (1.04-fold) 
at the 95th percentile, corresponding to the upper 5% of overall days compared to the ML-simulated (actual) 
DRR at the present era, and 1.13-fold (0.97-fold) at the 99th percentile corresponding to the upper 1% of overall 
days. On the other hand, the largest increase was anticipated to be 1.29-fold (1.16-fold) at the 95th percentile 
and 1.35-fold (1.16-fold) at the 99th percentile compared to the ML-simulated (actual) DRR in the present era.

The effectiveness of TL using data of a hotter region (i.e., Osaka) in future warming projections for Tokyo is 
also indicated as “no TL” and “TL” in Fig. 4. Their comparison clarified that TL cases increased the DRR values 
relative to no TL cases in warmer climate models. This suggests that learning using high temperatures is needed 
for ML to perform well conditions of little experience with a future warmer climate in a target region (i.e., Tokyo). 
Incorporation of TL increased DRR by 2.2% and 7.5% at the 95th and 99th percentiles, respectively, compared 
to without TL, for the middle-level warming climate of MIROC5, and those increased DRR by 7.1% and 6.2% 
for the high-level warming climate of GFDL-CM3 (the lower panels in Fig. 4). Finally, ML incorporating TL 
showed that the daily IHD mortality risk in Tokyo on average increased by 29% and 35% at the 95th and 99th 
percentiles using the high-level warming climate scenario in 2045–2055, compared to the risk simulated using 
ML in 2009–2019.

Figure 4.  Frequency distributions (upper panels) and percentiles (lower panels) of the DRR of IHD for people 
aged 75 + years in Tokyo. Against actual and ML results in 2009–2019, the DRR change was estimated using 
climate projections of (a) MRI-CGCM3, (b) MIROC5, and (c) GFDL-CM3 under the RCP8.5 condition. “no 
TL” and “TL” indicate ML cases not incorporating TL and incorporating TL, respectively. ML machine learning, 
DRR daily relative risk, IHD ischaemic heart disease, TL transfer learning.
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Discussion
Pre-analyses using the DLNM suggested a requirement of lag-related weather elements for daily mortality when 
selecting features for inclusion in ML. Lag days of approximately 1 week for heat exposure (Tmax in this study) in 
IHD mortality (Fig. 2a–c) are supported by the results of a meta-analysis28 of research conducted in several coun-
tries. This 1-week delay of the mortality risk for IHD in summer is longer than that for heatstroke (0–2 days)29. 
The increase in cardiovascular disease mortality at higher temperatures is attributed to dehydration-induced 
increases in the viscosity of plasma, serum cholesterol levels, and red blood cell and platelet  counts21,30. In addi-
tion, the increase in core body temperature caused by an exaggerated thermoregulatory response can lead to the 
development of acute cardiovascular  diseases30.

Although CEV mortality is less sensitive to weather elements (Fig. 2d–f), the lag effect of Tmax and the longer-
delayed effect of Pres were found to have weak responses in the DRR. In particular, pressure-related features 
tended to be selected as important features for the ML of CEV, instead of temperature-related features (Fig. 3b). 
A nonsignificant effect of high temperature on CEV mortality has been reported in several  studies31. Although 
changes in pressure are related to CEV diseases, such as subarachnoid  haemorrhage32, associations with air pres-
sure in summer have not been epidemiologically confirmed. These characteristics of CEV hamper reproduction 
of the DRR with weather features using ML.

An additional temperature effect of AcTmax30 is likely needed to reproduce the DRR of IHD in Tokyo. Indeed, 
peaks in the DRR in 2018 and 2019 were reproduced by the inclusion of AcTmax30 when executing ML (Fig. S11). 
As suggested by the SHAP response to AcTmax30, an increase in AcTmax30 reduced the DRR of IHD (Fig. 3a-3), 
implying a kind of heat acclimatisation. Excessive heat loads to the human body have adverse effects on cardio-
vascular function (e.g., thermoregulatory disruption and haemoconcentration)33 whereas heat acclimatisation 
of the human body produces cardiovascular adaptation (improving physiological responses to heat)34, even with 
long-term heat exposure over several  months35.

In this study, evaluations of future DRR possibilities using climate projection data were challenged for the 
IHD mortality risk in Tokyo. However, the influence of future further aging of the population on ML implemen-
tation was not considered. The DRR values defined in this study represent the relative mortality risks during 
summer of 1 year, to avoid the influence of year-to-year changes caused by, for example, natural progression of 
population aging and medical advances that extend longevity. However, the future DRR calculated for people 
aged 75 + years (Fig. 4) was probably underestimated in comparison with the actual DRR because of the growth 
of the population older people aged 85 + years.

TL has been applied to predict future change in various disciplines, such as Earth  sciences36–38. In this study, 
we evaluated the change in mortality risk under future climate conditions, incorporating TL and imbalanced 
learning (or resampling)39,40 architectures. A similar method has been used to forecast extreme  heatwaves41. 
Because the characteristics that related Tmax to DRR in Osaka City (“source or supporting data” in TL) except for 
population size were similar to those in Tokyo’s 23 wards (“target data” in TL) (Fig. 1), ML implementation with 
TL was effective for higher-level climate warming (predicted by MIROC5 and GFDL-CM3) in Tokyo.

Because evaluation of the future mortality from ML and applying TL is breakthrough challenging, it is difficult 
to ensure the accuracy of the predicted mortality risk. However, use of the actual relationships between mortality 
risk and weather conditions in Osaka City, which are not currently experienced in Tokyo, can interpolatively 
predict a potential future mortality risk in Tokyo. TL was conducted using artificial data over-sampled around 
the upper 10% of the DRR in Tokyo, which was rare from 2009 to 2019. This resampling technique increased 
the DRR at the maximum frequency of appearance by 1.3-fold. Future deaths owing to IHD in Tokyo have not 
been officially analysed, whereas it is estimated that the number of inpatients with cardiovascular diseases will 
increase 1.3-fold by 2050 compared to  201518. Hence, over-sampling at the upper 10% of DRR should be used 
in future investigations.

Methods
Daily weather data
Agro-Meteorological Grid Square Data (https:// amu. rd. naro. go. jp/) provided by the National Agriculture and 
Food Research Organization (NARO)42 were used to assess daily weather conditions in Tokyo and Osaka. These 
data were developed by 1 km spatial interpolation of meteorological elements (e.g., temperature, wind speed, 
rainfall, and solar radiation) measured nationwide in Japan at observation stations of the Japan Meteorological 
Agency (JMA). Temperature-related data were corrected for grid altitude. In this study, Tmax (°C) and Rain (mm) 
were extracted and averaged for grids corresponding to Tokyo’s 23 wards (986 grids) and Osaka City (422 grids), 
as shown in Fig. 5. Pres and Vap data were from the JMA observation station (https:// www. jma. go. jp) located 
in the centre of Tokyo and Osaka, because the abovementioned Agro-Meteorological Grid Square Data do not 
include those elements.

Daily mortality data
Statistical surveillance information regarding the number of daily deaths (https:// www.e- stat. go. jp/ en) pub-
lished by the Ministry of Health, Labour and Welfare (MHLW) of the Japanese government were used in this 
study. Information such as the cause of death, age, and sex was included in the data. The International Statistical 
Classification of Diseases and Related Health Problems 10th Revision (ICD-10) was used to classify causes of 
death. We analysed the following I20–25 and I60–63 codes corresponding to IHD and CEV, respectively: I20, 
angina pectoris; I21, acute myocardial infarction; I22, subsequent myocardial infarction; I23, certain current 
complications following acute myocardial infarction; I24, other acute ischaemic heart diseases; I25, chronic 
ischaemic heart disease; I60, subarachnoid haemorrhage (including sequelae, I69.0); I61, intracerebral haemor-
rhage (including sequelae, I69.1); I62, other nontraumatic intracranial haemorrhage (including sequelae, I69.2); 

https://amu.rd.naro.go.jp/
https://www.jma.go.jp
https://www.e-stat.go.jp/en
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and I63, cerebral infarction (including sequelae, I69.3). The mortality from IHD and CEV was approximately 
60–70% in people aged 75 + years (Fig. 5).

Lag analysis and machine learning
Figure 6 depicts the flow of analysis in this study. We conducted: (A) a lag analysis for feature selection related to 
IHD or CEV mortality, (B) pre-analyses for ML, and (C) mortality hindcast and future risk evaluation using ML.

Lag analysis
The  DLNM24 was used to reveal a delayed weather effect on IHD and CEV mortality in the part (A) of Fig. 6. This 
model has been used in public health  studies43 and is defined using the following model equation:

Here, NDt represents the expected number of deaths at day t in which the error function was assumed to 
follow a quasi-Poisson distribution. cbt,l is the cross-basis matrix for a weather variable (Tmax, Vap, or Pres) with 
t and lag days l, which is produced by the DLNM fitting the nonlinear and lag effects. ns means a natural spline 
function, which was examined for the date with the degree of freedom per year (df = 2) and year = 11. This term 
works to adjust long-term trends. However, the influence of day of the week on mortality was negligible accord-
ing to sensitivity experiments including or excluding the term in Eq. (2). The exposure–response curves were 
modelled by a natural cubic function with 2 degrees of freedom for variables and lag days. Those knots were 
placed at equally-spaced values in the temperature range and at equal intervals on a logarithmic scale for lag 
days by  default24.

The maximum number of lag days was assigned as 14 days (2 weeks), and two degrees of freedom were used 
for the weather variable and lag effect. Moghadamnia et al.28 revealed that temperature lag affected the risk for 
cardiovascular mortality year-round with the greatest risk at 14 lag days, by their systematic review and meta-
analysis worldwide. Because heat-related mortality indicates shorter lag effects than cold-related mortality, we set 
14 days as the maximum lag days. In addition, we assumed identical maximum lag effects of weather parameters 
other than temperature because lag effects on mortality risk have not been revealed.

The DLNM was conducted for one of the three weather variables (i.e., Tmax, Vap, or Pres) without incorporat-
ing the other two variables as confounders, because the specified lag days for selecting ML features were unaf-
fected even if confounders were incorporated to implementations of DLNM.

(2)log(NDt) = intercept + cbt,l + ns
(

date, df × year
)

Figure 5.  Weather data grids (red dots in maps at left) and summer ischaemic heart disease (IHD) and 
cerebrovascular disease (CEV) mortality rates according to age group (pie charts at right) analysed in (a) 
Tokyo and (b) Osaka. Gridded weather data at 1 km resolution from the Agro-Meteorological Grid Square 
Data provided by the NARO were used. Mortality data were extracted for July–August from 2009 to 2019. The 
Generic Mapping Tools (GMT) graphic system (version 6.4.0; https:// www. gener ic- mappi ng- tools. org/ team. 
html) was used to draw the maps.

https://www.generic-mapping-tools.org/team.html
https://www.generic-mapping-tools.org/team.html
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Feature selection
BorutaSHAP25, which combines the Boruta feature selection algorithm with SHAP, was also used in part (B) of 
Fig. 6. The Boruta feature selection is a wrapper method for detecting important features in  ML44,45: Shuffled 
duplicates (shadow features as noise) of all features are added as unpredictability to the original feature dataset 
(e.g., Tmax, TmaxPre2, …, Pres, PresPre2, …); next, feature importance based on Z-scores in the enlarged dataset 
(i.e., original features + shadow features) is used to train a decision tree-based algorithm (Gradient Boosting 
Decision Trees in this study). Each training cycle is analysed for a higher priority feature than the most important 
shadow feature, and elements considered highly irrelevant are deleted.

BorutaSHAP provides flexibility in model selection and allows visualisation of the selected features by apply-
ing the  SHAP25. The SHAP, i.e., “Shapley value,” has been originally developed to estimate the contribution of an 
individual player in a collaborative team and ensure fair allocation according to their  contribution46,47. Features 
(daily weather elements in this study) contribute to the model’s output or prediction with a different magnitude 
(importance) and sign (positive or negative), which is accounted for by the Shapley  values48.

Machine learning (ML)
A gradient boosting algorithm was adopted as the ML used in part (C) of Fig. 6; this is an ensemble learning 
technique to improve the performance of  ML49,50. Ensemble learning includes multiple models termed “weak 
learners” (generally decision trees); their outputs are combined for prediction or classification  problems25. Boost-
ing learners learn in a sequential manner to correct errors from the previous learner and create a robust model to 
reduce model bias. Therefore, a gradient boosting ML increases accuracy more than other ML algorithms, such 
as random  forest49,51. In this study, the  LightGBM26 was adopted as a gradient boosting ML, which significantly 
outperforms other gradient boosting algorithms in terms of computational speed and memory  consumption52.

The 2009–2019 dataset was divided into 10 groups and iteratively evaluated using a k-fold cross-validation 
 method53 (i.e., k = 10), which used 90% of the data as training data and the remaining 10% as testing data. In 
searching the best hyperparameters in the ML model, “the number of leaves” parameter required for leaf-wise 
tree growth, which is adopted in LightGBM, was optimised from values of 10–100 for ML.

Evaluation to future climate change
Transfer learning (TL)
A TL  architecture54–56 was applied to evaluate future mortality in this study. Because the present era (2009–2019) 
data did not include many days with higher temperature which could happen frequently in the future climate, 
the future DRR evaluated by ML may be biased toward the present average temperatures. Therefore, to resample 
the present (2009–2019) data to the higher frequency of high-temperature appearance days in the future, the 
Synthetic Minority Over-Sampling Technique for Regression with Gaussian Noise (SMOGN)57 was implemented 
as a pre-processor for TL. Regression analysis often targets an accurate prediction of rarely occurring extreme 
values of an objective variable, which is assigned continuous values. To increase the frequency of rare instances 
(days with extremely high temperatures in this study), imaginary data were generated by applying Gaussian noise 
to the rare samples. Resamples using the SMOGN were adjusted to be over-sampled around the upper 10% of 
DRR in Tokyo, which is rare in the present era but could be more frequent in the future.

Figure 6.  Flow of analysis in this study. We performed “lag analysis for feature selection”, “pre-analyses for 
machine learning”, and “machine learning performance”. DLNM, distributed lag nonlinear model; SHAP, 
SHapley Additive exPlanations; GBDT, gradient boosting decision tree.
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TL was applied to explore future possibilities for DRR of IHD in Tokyo, which can improve the prediction 
accuracy of a task for a target domain (Tokyo data) in conjunction with information obtained from a task for a 
source domain (Osaka data). This situation corresponds to a simple “homogeneous transfer” with transforma-
tion of the source domain to the target domain. If there is an available dataset drawn from a domain related to 
but not exactly matching a target domain of interest, homogeneous TL can be used to build a predictive model 
for the target domain as long as the input feature space is the  same55. A feature-based algorithm of the Feature 
Augmentation  Method58 was adopted as TL to evaluate changes in risk. The augmented source data contain 
common and source-specific domains, whereas the augmented target data contain common and target-specific 
domains. Hence, the feature dimension is augmented threefold ( χ →

⌣
χ = R

3F ; χ denotes a feature domain, ⌣χ 
an augmented feature domain, and R3F a three-dimensional real space). Next, it is defined as Φs and Φt as map-
pings of the source and target data, respectively, for χ →

⌣
χ:

Here, 0 is the zero vector and x is the feature vector of the source or target domain. Finally, supervised learn-
ing was implemented by assigning the dataset of Tokyo as Φt and that of Osaka as Φs.

Climate change projection
The Regional Climate Projection Scenario  Dataset27 (https:// amu. rd. naro. go. jp/) provided by the NARO was used 
to evaluate the effect of future climate change on the DRR of IHD in Tokyo. The output results, simulated using 
several global climate models, were statistically downscaled to the Japanese regional model with 1 km spatial 
resolution. A Gaussian-type scaling  approach59 was adopted as a statistical downscaling method to improve the 
reproducibility of daily and annual variation. Based on the relationship between the standard deviations (e.g., 
temperature, wind speed, rainfall, and solar radiation) of the global climate model and observations for a past 
reference period, means and standard deviations were corrected such that the climate change signal would not 
be  enhanced60.

From published output results of several models, the MRI-CGCM3 (Japan; Meteorological Research Institute), 
MIROC5 (Japan; The University of Tokyo, National Institute for Environmental Studies, and Japan Agency for 
Marine–Earth Science and Technology), and GFDL-CM3 (USA; NOAA Geophysical Fluid Dynamics Labora-
tory) models, which were used in the Coupled Model Intercomparison Project phase 5 (CMIP5)61, were chosen 
because the simulated temperature bias included low, middle, and high levels, respectively, of the NARO climate 
projection scenario  dataset62 (cf. Fig. S12). In addition, these model projections included the two scenarios 
RCP2.6 (low-emissions scenario via stringent mitigation) and RCP8.5 (high-emissions scenario without any 
mitigation) of the greenhouse gas emissions “pathway”63. In this study, we used the projection result of RCP8.5 
as the worst-case climate scenario to evaluate the future IHD risk.

Data availability
The data that support the findings of this study are available from the NARO portal site of official statistics pub-
lished (gridded weather and climate scenario data; https:// amu. rd. naro. go. jp/) and MHLW (death data; https:// 
www.e- stat. go. jp/ en). These data are of restricted availability, and we used them with permission for this study. 
Therefore, data are available from the corresponding author upon reasonable request and with the permission 
of the NARO and the MHLW.
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