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Abstract Climate change is creating an increase 
in temperatures, which is harming the quality of 
life of people all over the world, particularly those 
with minimal financial resources. While 30% of the 
world’s population is now vulnerable to extreme heat, 
estimates show that ratio will rise to 74% in the next 
20 years, according to forecasts. Using the UrbClim 
climate model, this study examines the space-time 
variability of the heat stress index (HI) in differ-
ent local climate zones (LCZs), as well as how heat 
wave conditions might affect this index based on land 
use and land cover. To that end, Seville, in Southern 
Spain, was investigated during the summer of 2017, 
when it had four heat waves. The following indices 
were considered for each urban sub-area: Normalized 
Difference Vegetation, Proportion Vegetation, Nor-
malized Difference Built, and Urban Index. The goal 
is to conduct a statistical analysis of the link between 
the aforementioned elements and the heat stress 
index in order to recommend mitigation and resil-
ience techniques. Our findings showed that compact 

and industrial LCZs (2, 3, and 10) are less resistant 
to HI than open and rural regions (5, 6, B, D, and G), 
which are more resistant to HI due to higher vegeta-
tion rates. The heat wave condition exacerbates the HI 
in all LCZs. As a result, initiatives such as enhancing 
open space, increasing green space, or using green 
roofs and façades might alleviate heat stress and 
improve people’s quality of life.

Keywords Heat mitigation · Heat stress index · 
Heat wave · UrbClim model

Introduction

The impact of extreme weather events connected to 
global warming is one of the most important con-
cerns that humans are now confronting (Kovats et al., 
2005; Song et al., 2020). The 6th Assessment Report 
of the Intergovernmental Panel on Climate Change 
(IPCC) has highlighted a significant increase in envi-
ronmental temperatures in recent decades, which will 
have significant negative effects on people’s health 
and quality of life, particularly those who live in cit-
ies (IPCC, 2021). The alteration and modification of 
the soil as cities expand, in combination with popula-
tion growth, cause an increase in global temperatures 
and contribute to climate change (Li et  al., 2011). 
Changes on the earth’s surface involving imperme-
able materials reduce evapotranspiration (Stewart & 
Oke, 2012). These spaces absorb solar radiation and 
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heat up during the day, and release the heat into the 
atmosphere at night (An et al., 2020; Arnfield, 2003; 
Zhou et al., 2015). The latest estimates of the United 
Nations Organization (UN) foresee a 20% increase in 
the urban population by the year 2050 (UN, 2018), 
which implies a significant transformation of urban 
coverage worldwide (Schneider et al., 2010). In turn, 
the phenomenon known as urban heat island (UHI) 
influences the rise in city temperatures. Extreme 
weather conditions such as heat waves can result from 
the intensity of such events, which can be influenced 
by human action. Numerous studies confirm that heat 
waves are becoming more intense and more frequent, 
and last longer (Coumou et  al., 2013; Lau & Nath, 
2012; Meehl & Tebaldi, 2004).

It is estimated that 30% of the world’s population 
currently suffers from extreme heat, and that figure 
may rise to 74% in the next 20 years (Mora et  al., 
2017). Given this climatic emergency, it is critical 
to conduct studies to determine which city areas are 
most vulnerable to severe heat stress. Urban areas 
with high temperatures are identified as urban hot 
spots (UHS). UHS have positive associations with 
various local climatic zones (LCZs) and land use/
land cover (LULC) (Hidalgo & Arco, 2022;  Amin-
din et  al., 2021; Hidalgo & Arco, 2021). The scien-
tific community has approved a number of metrics 
and calculation systems for measuring heat exposure 
in urban areas. For instance, wet bulb globe tempera-
ture, effective temperature, universal thermal climatic 
index (UTCI), humidex (HU), and heat index (HI) are 
among these metrics. HI, on the other hand, is one 
of the most widely used methods within the scien-
tific community (Jacobs et al., 2019; Kotharkar et al., 
2021; Verdonck et  al., 2018) because it produces 
adequate results with only two parameters: ambient 
temperature and relative air humidity. One possibility 
for determining these environmental variables is to 
distribute temperature and humidity probes through-
out the urban areas of study (Kotharkar et al., 2021; 
Kumar et  al., 2022) or using urban climate models 
such as Muklimo from Germany’s meteorological 
agency (Geletič et  al., 2018) or UrbClim from the 
European Space Agency’s Copernicus climate change 
service (De Ridder et  al., 2015; Martí Ezpeleta & 
Royé, 2021; Verdonck et  al., 2018). Since the last 
model provides climatic variables at a resolution of 
100 m, it is widely used in studies of heat stress in 
urban areas (Royé et al., 2021; Verdonck et al., 2018).

Heat stress in cities has a high space-time vari-
ability and is influenced by climatic and morpho-
logical factors. A study of heat stress in Madrid using 
the UrbClim model between 2008 and 2017 found 
a significant positive correlation between the vari-
ous LULCs and heat stress (Royé et  al., 2021). The 
five Indian cities Kolkata, Chennai, Delhi, Mumbai 
(Kumar et  al., 2022), and Nagpur (Kotharkar et  al., 
2021) reported increased heat stress in the face of an 
environmental heat wave situation. The increase is 
greater in areas with higher construction and popula-
tion density than in neighborhoods with lower density 
and population. The classification of LCZs is com-
monly used in studies accounting for the morpho-
logical conditions of cities (Hidalgo & Arco, 2021; 
Ngarambe et al., 2020; Stewart & Oke, 2009; Wang 
& Ouyang, 2017). Accordingly, heat stress studies on 
the cities of Nagpur (India) (Kotharkar et al., 2021), 
Brno (Czech Republic) (Geletič et  al., 2018), and 
Antwerp, Brussels, and Ghent (Belgium) (Verdonck 
et  al., 2018) found that the LCZs identified as 2, 3, 
5, 8, 9, and 10 presented greater heat stress, whereas 
LCZs 6, B, D, and G indicate less heat stress owing 
to more green spaces and smaller impervious areas. 
These studies, which are based on the average tem-
peratures during a certain time period, are appropri-
ate for understanding the global effects of heat on the 
population; however, they do not provide complete 
information on the periods when cities exceed aver-
age temperatures due to extreme weather events, such 
as heat waves.

The objective of this research is to determine the 
space-time variability of heat stress in the different 
LCZs and LULCs of Seville (Spain) during the sum-
mer of 2017, as well as how heat wave conditions 
may increase this value. To do so, the UrbClim mod-
el’s climatic variables of ambient temperature and rel-
ative humidity were used, and Sentinel 2 images were 
utilized to produce the Vegetation Proportion (PV), 
Normalized Difference Vegetation Index (NDVI), 
Built Normalized Difference Index (NDBI), and 
Urban Index (UI) for the various LCZs to determine 
their relationship with heat index variability. The evo-
lution of the UHS in various LULCs and LCZs was 
then investigated. Finally, statistical analyses using 
the data panel and ANOVA techniques were used to 
measure correlations between the obtained data.

In this study, the following are our research ques-
tions: (1) What spatio-temporal variability does 
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the heat stress index and UHS present in the differ-
ent LCZs and LULCs of Seville? (2) How does this 
index intensify during environmental heat waves? 
(3) Is there a link between the heat stress index and 
the NDVI, PV, NDBI, and UI indices in the various 
LCZs? Our goal is to provide a panoramic view of 
the spatio-temporal variability of the heat stress index 
on the city of Seville’s various LCZs and LULCs, as 
well as to determine how heat wave conditions can 
increase this index. Extrapolation of open-access 
methodology results used in this research could aid 
decision-making by urban planners and public admin-
istrations for the development of new urban areas. 
The promotion of heat-resistant LCZs will assist 
urban areas in becoming climate change–resistant 
environments, thereby improving people’s quality of 
life.

Materials and methods

Study area

Seville (Fig. 1) is located in the Andalusia region of 
southern Spain. Seville has a 140-km2 urban area 
and a population of 688,711. However, the metro-
politan area of Seville has a population of 1,548,741 
inhabitants, making it the fourth most populous city 
in Spain. The UTM coordinates are X: 768772.582 
and Y: 4137366.748; the city is located only 7 m 
above sea level. It has cold and humid winters and 
dry, warm summers according to the Köppen-Geiger 
Mediterranean climate typology (Csa). The proximity 

of the Mediterranean Sea, on the other hand, has a 
considerable influence on Seville’s climate. Through-
out the year, temperatures oscillate between 3 and 36 
degrees Celsius (°C), with highs of 40 °C or more in 
the summer. The city’s location allows for a very high 
number of annual hours of sunshine (3526), giving an 
average of 9.66 h per day.

Methodology

Figure 2 depicts the methodology used in this study.
The PV, NDVI, UI, and NDBI indices of the city 

were determined at a resolution of 10 m using Sen-
tinel 2 images. The first two indices are related to 
the amount of vegetation in an area and its conser-
vation status. The last two are construction-related 
and enable territorial analysis in urban studies. Fol-
lowing that, the LULC maps were created. The sup-
port vector machine (SVM) methodology was used 
with QGIS software to classify the land cover, and 
the terrestrial cover was determined using a confu-
sion matrix (Campbell, 1996). The application of 
this methodology in investigations requiring land 
surface classification is well documented in the litera-
ture (Yoo et al., 2019). Then, in order to characterize 
the landscape and urban structure, we identified the 
various LCZs that comprised the city. Using UrbClim 
data from the Copernicus Data Store (https:// cds. 
clima te. coper nicus. eu/ cdsapp# !/ datas et/ sis- urban- 
clima te- cities? tab= form), the average values of ambi-
ent temperature and relative humidity in each LCZ 
were obtained for periods of heat wave and normal 
environmental conditions between July and August 

Fig. 1  Study area, Spain, 
Andalusia, Seville
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2017. This year was selected because it is the last 
year for which UrbClim data was in the Copernicus 
Data Store. The heat stress index and the UHS in each 
LULC and LCZ were calculated using these values 
and then correlated with the other indices using sta-
tistical analysis software STATA, version 16.

LCZ mapping and classification

In accordance with Stewart and Oke’s (2009) classifi-
cation, we chose to divide the city of Seville into dif-
ferent LCZ spaces of similar coverage, morphology, 
and development (Fig.  3). This option was chosen 
over using pre-existing LCZ maps in order to achieve 
high precision.

As a result, each LCZ shares characteristics based 
on its shape and layout (Stewart & Oke, 2012) as long 
as those characteristics are maintained, allowing for 

extrapolation to similar urban areas elsewhere. The 
utility of this function is well documented in many 
landscape characterization studies (Anjos et  al., 
2020; Brousse et  al., 2019; Emmanuel & Krüger, 
2012; Equere et al., 2020; Khamchiangta & Dhakal, 
2019; Wang & Ouyang, 2017). Following Stewart 
and Oke’s (2012) models and criteria, the resulting 
LCZ can be seen in Fig. 3, which includes compact 
mid and low rise (2 and 3), open mid and low rise 
(5 and 6), heavy industrial (10), low plants (LCZ-d), 
scattered trees (LCZ-B), and water (LCZ-G). Figure 4 
depicts the classification of the zones.

The steps carried out for LCZ identification were 
as follows: (1) analysis and study of the city based 
on images from Google Earth and Google Street 
View (Yang et  al., 2019); (2) identification of the 
orientation parameters and urban morphology of 
the images of the previous point; (3) delimitation of 

Fig. 2  Methodology
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the different LCZs based on the construction char-
acteristics of the studied areas (height of buildings, 
green spaces, road areas); (4) comparison of the 
resulting LCZ map with Google Earth images. A 
95% match was found in a comparison of LCZ plans 
and Google images using 200 benchmarks. Only ten 
points did not reflect LCZ similarity. These, how-
ever, were manually corrected.

Sentinel 2 images

Sentinel 2 images the earth’s surface in a multispec-
tral mode. Changes in the earth’s surface and vegeta-
tion can thus be tracked from anywhere on the planet. 
The images are made up of 12 spectral bands with a 
resolution of 10 to 60 m. The images were obtained 
from the European Space Agency (ESA) via the 

Fig. 3  LCZ established by authors Stewart and Oke (2012)

Fig. 4  LCZ established for 
the city of Seville
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Copernicus Open Access Hub. For this study, all 
level 2 images available for the months of July and 
August 2017 with a cloudiness index of less than 
5% were chosen (07/26; 07/31; 08/05; 08/15; and 
20/08). The presence of clouds in Sentinel images 
is typically a major issue due to pixel and informa-
tion loss. A cloud index of less than 5% is sufficient 
to ensure that any potential loss of information has 
no effect on the results. The mean values of the five 
images were obtained using these images in order to 
obtain the various indices. Following download, the 
images were orthorectified and atmospherically cor-
rected using the Sentinel Toolbox (S3TBX) in the 
SNAP software. Through the aerosol optical thick-
ness (AOT) factor, this process works on band 10 to 
correct for the presence of clouds and on the blue, 
red, and SWIR bands to improve atmospheric trans-
parency. The georeferencing used after this process 
was ETRS89/UTM Zone 29N.

Land use/land cover

The earth’s climate system depends heavily on the 
land surface temperature (LST), and there are numer-
ous LST studies that use different land covers to deter-
mine a relationship between the two elements (Shafi-
zadeh-Moghadam et al., 2020; Otukei and Blaschke, 
2009; Amindin et  al., 2021). Moreover, there are 
several validated LULC products, each with its own 
set of covers (Corine Land Cover). Our study focused 
on five different types of land uses: vegetation, bod-
ies of water, buildings, bare soil, and farmland. As a 
result, it was decided to manually obtain the LULC. 
First, an image with red, green, and blue bands was 
created using Sentinel 2 images. The QGIS software 
and the SVM method were then used to create the 
LULC map. As a training system, the QGIS plugin 
dzetsaka was used, which allows soil classification 
by determining different zones based on each type of 
soil. This methodology was introduced in 1999, and 
its main advantage is that it uses fewer samples while 
achieving high precision (Amindin et al., 2021). Sev-
eral studies have used this method to accurately deter-
mine land cover differentiation (Amindin et al., 2021; 
Karakuş, 2019; Otukei & Blaschke, 2010; Shafri & 
Ramle, 2009).

The precision of the obtained LULC planes 
was determined using a precision matrix (Camp-
bell, 1996), which is widely used in investigations 

requiring land surface classification (Yoo et  al., 
2019). To do so, we began with a sample of 200 ran-
domly selected points within the study area. They 
were subsequently divided into two parts: 75% (150 
points) for training and 25% (50 points) for testing. 
We trained the model on training data first, and then 
applied it to the remaining data and evaluated its per-
formance with the precision matrix.

NDVI

The NDVI is calculated using Eq. 1 and the red (Red) 
and near-infrared (NIR) bands. NDVI values range 
from −1 (no vegetation) to 1 (leafy vegetation):

Given the results obtained with Eq. 1, the PV can 
be calculated through Eq.  2 (Rajeshwari, 2014; Yu 
et al., 2014).

where NDVI min and NDVI max are the minimum 
and maximum values of the NDVI variable of each 
image used in the investigation and the NDVI is 
obtained from Eq. 1.

NDBI

The NDBI displays the proportion of built-up area 
versus undeveloped land in each pixel of a satellite 
image. According to Eq.  3, it was calculated using 
shortwave infrared (SWIR) and near-infrared (NIR) 
bands (Zha et al., 2003):

UI

This index distinguishes built-up or under-construc-
tion areas from rural areas with vegetation or bare 
soil. According to Eq. 4, the UI allows us to identify 
large urban areas using the second band of shortwave 
infrared (SWIR2) and near-infrared (NIR) (Kawa-
mura et al., 1996):

(1)NDVI =
NIR − Red

NIR + Red

(2)PV =

[

NDVI − NDVImin

NDVImax − NDVImin

]2

(3)NDBI =
NIR − SWIR

NIR + SWIR
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UrbClim model

The city’s ambient temperature and relative 
humidity data were obtained on the specified 
dates from the UrbClim model developed by VITO 
(Flemish Institute for Technological Research). 
This approach is used to generate urban climate 
data in European cities as part of the Coperni-
cus Climate Change Service program, which was 
implemented by the European Center for Weather 
Forecasts (ECMWF). The large-scale model data-
set is derived from the ERA-5 reanalysis and is 
then reduced to the urban agglomeration scale. 
The land uses in this model are provided by the 
CORINE LAND COVER, which is linked to a 
three-dimensional atmospheric module. This is 
a simple evaluation of the energy balance of the 
urban surface. It was designed to target the spatial 
scale of a city, to be quick and complete, and to 
produce results with high precision. It is based on 
the Land Surface Interaction Calculation (LAICA) 
transfer scheme between the atmosphere and the 
geosphere, which was later modified to include the 
surfaces of urban areas (De Ridder et  al., 2015). 
Therefore, the UrbClim model uses the different 
covers from CORINE as input for the soil surface. 
In our research, this situation contrasts with the 
use of the different LCZs as previously indicated 
and justified. The UrbClim model has been vali-
dated in several European cities, including Madrid 
(Martí Ezpeleta & Royé, 2021), Antwerp, Bruges, 
and Ghent (Verdonck et al., 2018). The data from 
UrbClim on ambient temperature, relative humid-
ity, and heat stress index were later linked to the 
LCZ map using the QGIS software which is nec-
essary to obtain the results of the environmental 
variables for each LCZ.

Processing and georeferencing (SNAP)

Using the SNAP software, the processing (geo-
metric and radiometric calibration) and georefer-
encing were carried out. For this, the radiomet-
ric calibration process began, which consists of a 

(4)UI =
SWIR2 − NIR

SWIR2 + NIR

process that allows for the correction of possible 
image pixel distortions. Following that, we pro-
ceeded with the geometric correction that allows 
us to correct the possible distortions of the sensor. 
Finally, the ETRS89/UTM zone 29N System was 
reprojected.

Environmental data validation

The environmental temperature and humidity data 
obtained from the UrbClim model were later com-
pared and validated with the data from the meteoro-
logical station located in Seville that is owned by the 
State Meteorological Agency (AEMET). This pro-
cedure is critical for validating the values obtained 
from the UrbClim model. The validation results for 
temperature and humidity were as follows: R2=0.95, 
RMSE=1.8, MBE=0.089 and R2=0.96, RMSE=4.5, 
and ME 0.89.

Heat waves

The AEMET database was used to obtain data on 
the days, duration, and thermal anomalies (tem-
perature exceedances above the 95th percentile 
values) of the heat waves. A heat wave, as defined 
by AEMET, is an episode of at least three con-
secutive days during which a minimum of 10% of 
the stations record maximums above the 95% per-
centage of their series of maximum daily tempera-
tures for the months of July and August during the 
period of 1971–2000. Between July and August 
of 2017, the city of Seville experienced four heat 
wave episodes. The first occurred between July 12 
and 16, with a 2.6 °C thermal anomaly. The sec-
ond occurred between July 28 and 30, with a 3.9 
°C thermal anomaly. The third occurred between 
August 2 and 6, with a 1.6 °C thermal anomaly. 
Finally, the fourth heat wave occurred between 
August 20 and 22, with a 2.9 °C thermal anomaly.

Heat stress index

The heat index (HI) formula (Eq.  5), developed in 
1990 (Rothfusz & Headquarters, 1990) and later 
modified (Brooke Anderson et al., 2013), was used to 
calculate the heat stress index:

Page 7 of 26    1164



Environ Monit Assess (2023) 195:1164

1 3
Vol:. (1234567890)

According to this equation, HI is the heat stress 
index in °C, T is the air temperature in °C, and H 
is the relative humidity in %. Based on the results 
obtained (Table  1), the effects on the population 
can be calculated (Kotharkar et al., 2021; Stewart 
& Oke, 2012).

Urban hot spots

The hot zones or spaces (UHS) can be located 
using the UrbClim model’s environmental tempera-
ture. Because of their high temperatures, they are 
classified as uninhabitable by the general public. 
Equation  6 can be used to identify the locations 
(Sharma et al., 2021):

where σ and μ are respectively the standard deviation 
and mean values of the ambient temperature of the 
area in °C.

(5)

Heat Index (HI) = − 8.78469475556

+ (1.61139411 × T)

+ (2.33854883889 × H)

− (0.14611605 × T × H)

−
(

0.012308094 × T
2
)

−
(

0.0164248277778 × H
2
)

+
(

0.002211732 × T
2 × H

)

+
(

0.00072546 × T × H
2
)

−
(

0.000003582 × T
2 × H

2
)

(6)T > 𝜇 + 2 ∗ 𝜎

Results

Results of the NDVI, PV, NDBI, and UI indices

The analysis of the NDVI, PV, NDBI, and UI indices 
of the area under study can be seen in Fig. 5.

The average values obtained for these indices in 
the city of Seville were as follows: NDVI 0.284, PV 
0.385, NDBI 0.041, and PV 0.132. In general, these 
are typical values for a city with the overall charac-
teristics of Seville. Given that the images are from the 
summer (July and August), and based on the NDVI 
and PV values, the vegetation in the study area would 
be classified as sparse. According to the NDBI and 
UI values, compact areas with medium density out-
number open areas with low density.

Figure 6 displays the mean values of NDVI, PV, 
UI, and NDBI in each LCZ. The NDVI index pre-
sents the highest values for LCZ-D (low plants), B 
(scattered trees), 6 (open low rise), and 5 (open mid-
rise), while the lowest values are seen for LCZ-G 
(water), 10 (heavy industry), 2 (compact mid-rise), 
and 3 (compact low rise). The PV index presents the 
highest values in LZC-D (low plants), B (scattered 
trees), 5 (open mid-rise), and 6 (open low rise), 
whereas the lowest values correspond to LCZ-G 
(water), 10 (heavy industry), 2 (compact mid-rise), 
and 3 (compact low rise). These values confirm that 
the vegetation is lusher in rural areas and in open 
areas as opposed to the industrial and compact areas 
of the city.

The NDBI index presents the highest values in 
LCZ-2 (compact mid-rise), 3 (compact low rise), 5 

Table 1  Classification of heat indices and heat risk conditions

Source: Kotharkar et al. (2021)
The column with the values in italics indicate the value in °C of the heat stress index associated with the first column

Heat index Classification of heat HI General effect on people

HI-1 No risk < 26.00 No risk to population group.
HI-2 Very warm 26.66–32.21 Fatigue possible with prolonged exposure and physical activity.
HI-3 Hot 32.22–39.43 Sunstroke, heat cramps, or heat exhaustion LIKELY and heat stroke POSSIBLE 

with prolonged exposure and/or physical activity.
HI-4 Very hot 39.44–51.10 Sunstroke, heat cramps, or heat exhaustion POSSIBLE with prolonged exposure 

and/or physical activity.
HI-5 Extremely hot >51.11 Heat/sunstroke HIGHLY LIKELY with continued exposure.
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(open mid-rise), and 6 (open low rise). The lowest 
values are obtained in LCZ-G (water), D (low plants), 
B (scattered trees), and 10 (heavy industry). The PV 
index presents the highest values in LZC-2 (com-
pact mid-rise), 3 (compact low rise), 5 (open mid-
rise), and 10 (heavy industry); the lowest values are 
in LCZ-G (water), D (low plants), B (scattered trees), 
and 6 (open low rise). Such findings indicate that 
urban areas have higher occupancy and density than 
rural areas, and that industrial areas are more com-
pact (when compared to open areas).

Spatio-temporal evaluation of the LULC

Figure  7 depicts an analysis of the various LULC 
coverages in the LCZ. In terms of average values, the 
coverage with the greatest area in Seville is built-up 

(39.05%), while the coverage with the smallest area 
is water (2.31%). Vegetation coverage (10.96%), bare 
soil (18.46%), and farmland (29.22%) have intermedi-
ate values.

Figure 8 depicts LCZ’s various LULC coverages. 
These values of the various LULC coverages iden-
tified within each LCZ will allow us to confirm the 
results obtained with the NDVI, PV, NDBI, and UI 
indices. The greatest built-up coverage is found in 
LCZ-10 (heavy industry), 2 (compact mid-rise), and 
3 (compact low rise). To the contrary, the greatest 
vegetation coverage is found in LZC-B (scattered 
trees). Farmland coverage is mostly found in LZC-D 
(low plants).

It is important to note how the compact areas 
of the city (LCZ-2 compact mid-rise and 3 com-
pact low rise) present an average built-up coverage 

Fig. 5  Indices a NDVI, b PV, c NDBI, and d UI of the area under study
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(39.06%) greater than the open areas (27.21%) 
(LCZ-5 open mid-rise and 6 open low rise). The 
average vegetation cover is also higher in open 
areas (18.49%) than in compact areas (8.51%). 
The coverage results determined here for the city 
of Seville, however, are adequate in the context of 
the Mediterranean Sea basin, according to the Köp-
pen-Geiger classification of typical vegetation and 
adapted crops. The precision matrix with 200 ran-
domly selected points produced an accuracy of 82% 
for the various LULCs with a 95% confidence inter-
val. The Tau coefficient was 0.811, while the Kappa 
coefficient was 0.921. A manual correction was 

performed after the precision process to improve 
the precision of the obtained LULC plan.

Spatio-temporal evaluation of temperature

Figure  9 reflects the average air temperature in 
the city of Seville on a daily basis during the study 
period.

The average temperature was 31.8 °C throughout 
the study period (the average maximum and mini-
mum temperatures ranged between 34.1 and 29.9 
°C). The highest temperatures (higher NDBI and UI 
indices) are concentrated in urban areas. The lowest 
values are found in rural or suburban areas (higher 

Fig. 6  Indices a NDVI 
and PV, and b NDBI and 
UI of the area investigated 
by LCZ
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NDVI and PV indices). Figure  10 depicts the evo-
lution of average temperatures over the course of 
the study. The highest values are obtained between 
09:00 and 20:00, with rural areas having higher val-
ues. This is because, during the day, the solar radia-
tion received in rural areas is greater than in urban 
areas due to the shade generated by trees and build-
ings. The shade generated by trees and buildings 
prevents radiation from reaching the ground, thus 

heating enclosures and impermeable surfaces (Li & 
Meng, 2018). In addition, urban areas have higher 
thermal inertia, resulting in slower heating rates 
than rural areas. Another important factor to con-
sider is the cooling rate of vegetated areas (Arbuth-
nott & Hajat, 2017; Yang et  al., 2020). Between 
8:00 p.m. and 9:00 a.m., the city has the highest 
temperatures, while rural areas have lower values. 
When the sun sets, urban areas remain hot, whereas 

Fig. 7  LULC coverage of 
the area under study

Fig. 8  Mean LULC values 
in the different LCZs
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rural areas cool quickly. Because high thermal 
absorption materials are used in urban construction, 
they release heat into the atmosphere/environment 
at night (Dwivedi & Mohan, 2018; Hidalgo & Arco, 
2021; Santamouris, 2020), resulting in the urban 
heat island (UHI) phenomenon.

Figure  11a shows the average temperature for 
each LCZ. The average temperature is higher in 
LCZ-2 (compact mid-rise), 3 (compact low rise), 10 
(heavy industry), and 6 (open low rise). The lowest 
average temperatures correspond to LCZ-G, D, B, 
and 5. Thus, the average temperature in urban areas 
is higher (31.96 °C) than in rural areas (31.53 °C). 
Within urban areas, the compact LCZs (32.1 °C) 
present higher temperatures than the open LCZs 
(31.9 °C). Figure  11b displays the mean tempera-
tures by LULC. The highest temperatures corre-
spond to built-up (35.1 °C) and bare soil (34.5 °C) 
coverage; the lowest temperatures pertain to water 
(33.2 °C) and vegetation (33.8 °C) coverage.

Spatio-temporal evaluation of humidity

Figure 12 depicts an analysis of the average relative 
humidity in Seville over the entire study period.

Throughout the entire study period, the average 
humidity was 32.4%, while the maximum and mini-
mum mean values were 40.1% and 19.9%, respec-
tively. The highest humidity was seen for rural areas 

(the lowest values pertaining to urban areas). Fig-
ure 13 depicts the evolution of relative humidity over 
time. The lowest values are obtained between 09:00 
and 19:00, with rural areas having lower values than 
urban areas. This is due to plant evapotranspiration, 
which releases some of its moisture into the atmos-
phere at high temperatures, favoring environmental 
cooling (Gago et al., 2013; Solecki et al., 2005), and 
the effect produced by temperature, that is, the lower 
the temperature, the higher the relative humidity as 
the air approaches the degree of saturation.

Figure  14a depicts the average relative humidity 
for the various LCZs. The average relative humid-
ity in LCZ-D (low plants), B (scattered trees), and 
G (water) is the highest. The areas having the low-
est average relative humidity are LCZ-10, 5, and 2. 
The average relative humidity by LULC is shown in 
Fig. 14b. It is higher in water cover (44.4%) and veg-
etation (36%), and lower in built-up (30.9%) and bare 
soil (32.7%) covers. As a result, the LCZ and LULC 
with higher values for vegetation and green areas also 
have higher humidity values; areas and coverages 
with greater building expanses have lower humidity 
values.

Heat stress index

Figure 15 shows the HI results for Seville as classified 
by LCZ.

Fig. 9  Average air 
temperature in the city of 
Seville throughout the study 
period

1164   Page 12 of 26



Environ Monit Assess (2023) 195:1164

1 3
Vol.: (0123456789)

Fig. 10  Evolution of average temperatures per hour throughout the study period
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In general, the city has a “no risk” HI between 
10:00 p.m. and 9:00 a.m., but it rises to very warm 
from 10:00 a.m. to 11:00 a.m. and 8:00 p.m. to 9:00 
p.m., reaching a maximum HI of heat from 12:00 
to 19:00. Rural areas have a higher HI value in the 
morning than urban areas. On the contrary, rural 
areas have lower HI values in the afternoon than 
urban areas, which need time to reduce the value of 
HI. Figure  16 depicts the HI results obtained and 
qualified by LCZ during the heat wave periods. The 
greater the heat, the greater the intensification of the 
HI in all LCZs, such that the HI is classified as very 
warm from 00:00 to 09:00, and then intensified to hot 
from 10:00 to 12:00 h and 8:00 p.m. and 11:00 p.m.; 
and the HI reaches its maximum value, very hot, from 
1:00 p.m. to 7:00 p.m. We can see that urban areas 
increase their HI value faster than rural areas in the 
mornings, but drop more slowly in the afternoons. 
Meanwhile, the compact zones (LCZ-2 compact mid-
rise and 3 compact low rise) and industrial zones 
(LCZ-10 heavy industry) show less resistance to the 
HI index—they rise faster in the mornings and fall 
slower in the afternoons/evenings.

Figure 17, using the stress index scale established 
in Table 1, reports the differences in HI between the 
two environmental conditions studied (normal envi-
ronmental conditions and heat wave conditions). As a 
result, the blue color indicates no differences between 
the two climatic conditions, the red color indicates 
1-level intensification under heat wave conditions, 
and the yellow color indicates 2-level intensification. 
The most noticeable differences occur between 10:00 
a.m. and 9:00 p.m. In the vast majority of LCZ, there 
are two peaks on the HI scale between these periods.

UHS identification

Figure 18 reflects the spatio-temporal analysis of the 
average UHS of the city of Seville. The areas classi-
fied as UHS occupy 35.95% of the total area. As seen, 
most of the UHS are located in urban areas—not rural 
areas, where there are hardly any spaces that qualify 
as UHS.

Figure 19a shows the occupancy percentage of the 
UHS in the different LCZs, while Fig. 19b highlights 
the occupancy rate in the different LULCs. It is clear 
that most of the areas classified as UHS are in LCZ-
10 (heavy industry), 2 (compact mid-rise), and 5 
(open mid-rise). In turn, LCZ-G (water), 6 (open low 

rise), and D (low plants) present fewer UHS spaces. 
In terms of LULC coverage, the one with the highest 
percentage of UHS is built-up, while water and veg-
etation have the lowest occupancy.

Statistical analysis

Two complementary methods were used for our 
research’s statistical analysis: ANOVA and panel data. 
Both methods are appropriate for studying cross-sec-
tional data in time series to confirm the existence of 
a trend and the factors that influence it. When there 
are different groups, the ANOVA is used to compare 
the variances between the means. It is typically used 
to see if there is a difference in the means of different 
groups. Panel data, on the other side, is often cited in 
the literature and involves the use of multiple regres-
sion models (Alcock et  al., 2015; Chen et  al., 2011; 
Fang & Tian, 2020) which allows for the inclusion of 
a larger amount of data than traditional methods. The 
phases to follow are the following (Chen et al., 2011): 
(1) determine if the effects of the analysis are fixed 
or random, and (2) evaluation of the model through 
the Wooldridge and Wald tests. For our investigation 
and after carrying out the indicated tests, the method 
according to Eq. 7 was used:

where μit is the error of the model, αi represents the 
individual effects, Xit are explanatory variables, β is 
an independent variable, 𝑡=time, and 𝑖=individual.

The results of the ANOVA test carried out on the 
NDVI, PV, NDBI, and UI indices and temperatures 
and humidity and reflected through the Shapiro-Wilk 
test indicate non-normal distributions within the dif-
ferent LCZs, since p value < 0.05. Therefore, to 
continue with the ANOVA analysis for non-normal 
distributions, it is necessary to perform the Kruskal-
Wallis test, whose results are presented in Table 2.

According to the above results, the NDVI, PV, and 
UI indices, temperature, humidity, and HI without 
and with heat wave give statistically significant rela-
tionships above 99% in the different LCZs, while the 
NDBI variable has a relationship of 95%.

The ANOVA test carried out on the different 
LULCs and UHS, as reflected by the Shapiro-Wilk 
test, signaled a normal distribution within the differ-
ent LCZs (p > 0.05). The results (Table 3) attest that 
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there are statistically significant differences above 
99% between the LULC and the LCZ studied, which 
is supported by the F statistic> 0 and the variable 
Prob>chi2 < 0.001.

Accordingly, the HI values present statistically 
significant relationships that are greater than 99% 
between the different LCZs. The panel data was used 
to calculate the relationships between the indices (PV, 
NDVI, UI, LULC, and NDBI) and the dependent 
variable HI. The correlation coefficient was also cal-
culated; then, applying the Generalized Least Squares 
(GLS) method, a regression was obtained and data 
panel analysis was carried out, giving the results indi-
cated in Tables 4 and 5.

Table 4 shows how the HI presents a positive cor-
relation with the NDBI (0.185) and UI (0.258) indices 
and a negative correlation with the NDVI (−0.367), 
PV (−0.376), and LULC (−0.389) indices.

The statistical analysis (Table  5) carried out at 
a confidence level of 95% and taking into account 
the results obtained from the p value found a sig-
nificant and positive relationship of 95% between 
HI and NDBI. Additionally, there was a negative 
link with the PV and LULC variables of 99% and 
95% with the NDVI variable. All of them were tak-
ing into account a confidence level of 95%. An ade-
quate relationship is observed between the variables 
in terms of the values of R2, F, and Prob>chi2. As 
Prob>chi2 = 0.000, it can be affirmed that the fit is 
greater than 99%.

The statistical analysis was repeated for the heat 
wave periods undergone in Seville. Table  6 shows 
that the HI has a positive correlation with the NDBI 
(0.097) and UI (0.207) indices, yet a negative cor-
relation with the NDVI (−0.403), PV (−0.388), and 
LULC (−0.447) indices. Building-related indices 
(NDBI and UI) show a lower correlation in heat 
wave conditions than in normal environmental con-
ditions. However, the indices related to vegetation 
and LULC present a higher correlation under heat 
wave conditions.

Statistical analysis (Table 7) reports a significant 
and positive relationship of 95% between the vari-
able HI and NDBI, negative and over 99% with the 
LULC variable, and of 95% with the PV variable. 
A good relationship is seen between the variables 
when observing the values of F, R2, and Prob>chi2. 
As Prob>chi2 = 0.000, we can state that the adjust-
ment level is greater than 99%.

Following that, statistical analysis using the 
panel data method was used to determine the rela-
tionships between the HI and the UHS. Following 
the determination of the Pearson correlation coeffi-
cient, the regression was derived using the General-
ized Least Squares (GLS) method, and data panel 
analysis was performed, yielding the results shown 
in Tables 8 and 9.

Table 8 shows how HI presents a positive corre-
lation with the UHS variable (0.623).

From the statistical analysis (Table 9), a positive 
relationship greater than 99% is reported between 
the HI variable and the UHS. It is observed that 
there is a good relationship between the variables 
in terms of the values of F, R2, and Prob>chi2. 
Because Prob>chi2 = 0.000, it may be affirmed that 
the adjustment level is over 99%.

Discussion

The vegetation-related NDVI and PV indices are 
known to have higher values in rural areas (LCZ-D, 
B, and G) and open urban areas (LCZ-5 and 6), as 
opposed to urban areas or compact and industrial 
areas (LCZ-2, 3, and 10). In contrast, it has been 
demonstrated that the NDBI and UI indices related 
to building have higher values in urban areas (open, 
compact, and industrial; LCZ-2, 3, 5, 6, and 10) 
and lower values in rural areas (LCZ-G, B, and D). 
As a result, the higher an area’s building density, 
the higher the NDBI and UI indices, and the lower 
the NDVI and PV indices. According to the LULC 
results, built-up coverage predominates in urban 
areas, while bare soil and farmland predominate in 
rural areas. The coverage of vegetation is found to be 
greater in rural areas than in urban areas, and virtu-
ally non-existent in industrial areas. This coverage is 
greater in open city areas than in compact areas. Such 
findings summarize the urban morphology of each 
LCZ studied and are consistent with similar studies 
conducted in other cities and territories (Avdan & 
Jovanovska, 2016; Diallo-Dudek et al., 2015; Hidalgo 
& Arco, 2021; Kafy et al., 2021; Wang et al., 2019; 
Yang et  al., 2020). At the same time, it should be 
noted that the variability observed for the NDVI and 
PV indices cannot be attributed solely to LULC urban 
and coverage system variability. It also depends, to 
a lesser extent, on whether rainfall was abundant or 
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scarce during those months and drainage or irriga-
tion systems during the study period (Li et al., 2002). 
The higher the rainfall, the higher the NDVI and PV 
values, because the vegetation is leafier and greener, 
and the lower the rainfall, the lower the NDVI and PV 
values, because the vegetation is drier.

On some occasions and during the day, cities 
have lower temperatures than rural areas, whereas 
at night, the opposite is true. This is because of the 
amount of solar radiation received (which is par-
ticularly high in areas with sparse vegetation and 
bare soil) and the use of impermeable materials. 

However, due to the shade provided by trees and 
buildings, rural areas receive more solar radiation 
than urban areas during the day. Furthermore, green 
areas with vegetation in urban areas improve cool-
ing rates. In other words, when urban areas are not 
exposed to solar radiation, impermeable surfaces do 
not heat up, high doses of heat are not released, and 
the ambient temperature does not change (Lemus-
Canovas et al., 2020; Li & Meng, 2018; Sun et al., 
2014; Yang et al., 2020). At night, urban areas are 
hotter than rural areas; because rural areas have lit-
tle thermal inertia, they cool down quickly in the 

Fig. 11  Ambient temperature of a LCZ and b LULC of the study object area

Fig. 12  Average relative 
humidity of the air in the 
city of Seville during the 
entire study period
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Fig. 13  Space-time variability of relative humidity in the city of Seville
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Fig. 14  Relative humidity of a LZC and b LULC of the study object area

Fig. 15  HI index under 
normal environmental 
conditions by LCZ

Fig. 16  HI index in periods 
of heat wave by LCZ
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absence of solar radiation. As a result of the heat 
emitted by construction materials, urban areas 
remain warm, exacerbating the UHI phenomenon. 
As a result, the greater the density and population 
of a region, as well as the use of waterproof con-
struction materials, the more heat these materi-
als retain, and thus the more heat released into the 
atmosphere (Saaroni et  al., 2018; Wu et  al., 2019; 
Yang et al., 2020).

Temperatures in urban areas are higher in compact 
and industrial areas (LCZ-2, 3, and 10) than in open 
areas (LCZ-5 and 6). The configuration of LCZ-5 and 
6 with buildings located at great distances and large 
green spaces with vegetation is once again motivat-
ing this circumstance. Studies have corroborated that 
vegetation has an altering effect on the temperature 
of urban areas, producing a cooling (Du et al., 2020; 
Qiu et al., 2017) that can range from 1 to 3°C. This 
effect is caused not only by shading and evapotranspi-
ration processes, but also by the rates of cooling and 
heating caused by convection and transpiration. Our 
results are in line with those reported by other authors 
(Geletič et  al., 2018; Martí Ezpeleta & Royé, 2021; 
Verdonck et al., 2018) who used the UrbClim climate 
model in their studies on other European cities.

The results show that relative humidity levels are 
higher in rural areas than in urban areas. The low-
est humidity values detected here correspond to the 
compact and industrial zones (LCZ 2, 3, 10, and 6), 
which, as previously stated, have lower NDVI and PV 
indices and higher NDBI and UI values. These LCZs, 
however, have higher temperatures. The amount of 
vegetation within these LCZs and their evapotran-
spiration process, as well as the temperatures, could 
explain this situation. Higher temperature areas have 
lower relative humidity values (by definition, relative 
humidity is the ratio of absolute humidity to satu-
rated humidity at room temperature; because the lat-
ter increases with temperature, a fixed value of abso-
lute humidity produces lower humidity). This effect 
is corroborated by a study of four cities in Tennessee 
(USA), where trees were found to minimize the over-
all effect of heat due to an increase in environmen-
tal humidity (Hass et  al., 2016). On the other hand, 
the study on the thermal comfort conditions on the 

Fig. 17  Differences in HI between conditions (normal envi-
ronmental conditions and under heat wave conditions) by LCZ 
as scored in Table 1

▸
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historic squares of the cities of Seville and Madrid 
also confirms that the existence of high proportions of 
vegetation improves the thermal conditions of tourists 

who circulate through these public spaces (Karimi & 
Mohammad, 2022). Again, our results are in line with 
the findings of other authors (Geletič et  al., 2018; 

Fig. 18  UHS of the area 
under study

Fig. 19  UHS (%) of the entire period under study by different a LCZs and b LULCs

Table 2  ANOVA test results for NDVI, PV, NDBI, and PV indices in the LCZ

***p<0.001 and *p<0.05. R2, linear regression coefficient; HI (1), HI without heat wave; HI (2), Hi with heat wave

Source NDVI PV NDBI UI Temperature Humidity HI (1) HI (2)

Difference of 
square

0.0001*** 0.0001*** 0.018* 0.0008*** 0.0001*** 0.0001*** 0.0001*** 0.0001***

R2 35.23 35.23 16.83 24.95 62.78 63.50 78.97 53.27
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Martí Ezpeleta & Royé, 2021; Verdonck et al., 2018) 
who applied the UrbClim climate model to study 
European cities.

The different LCZs in Seville show significant HI 
variability. Daytime heat stress can be classified as 
medium between 12:00 and 19:00 in all LCZs under 
normal environmental conditions. In contrast, the 
heat stress index can be classified as no risk at night 
and at dawn (10:00 p.m. and 9:00 a.m., respectively). 
It has been demonstrated that rural LZCs (LZC-B, D, 
and G) with more vegetation increase the HI faster in 
the morning (10:00 and 11:00), but decrease it faster 
in the afternoon than urban areas. During heat wave 
periods, there is a significant intensification of HI in 
the various LCZs, particularly between 1:00 p.m. and 
7:00 p.m., when it is extremely hot. The HI intensifies 
rapidly in rural areas (LCZ-B, G, and D) in the morn-
ings but decreases more rapidly than in urban areas in 
the afternoons. Taking this into account, the compact 
and industrial LCZs (LCZ-2, 3, and 10) have higher 
HI values and maintain the intensity for a longer 
period of time than the open zones (LCZ-5 and 6), 
which have a lower value in a shorter period of time. 
Because of the impermeable materials used in densely 
populated urban areas, accumulated heat is released 
into the atmosphere at night, maintaining high HI val-
ues and necessitating more time to mitigate its effects. 
This trend has been observed in the cities of Kolkata, 

Chennai, Delhi, Mumbai, and Nagpur (India), where 
the areas most built-up and having least vegeta-
tion cover correspond to the areas with the highest 
HI (Kotharkar et al., 2021; Kumar et al., 2022). Our 
results agree with previous reports (Geletič et  al., 
2018; Martí Ezpeleta & Royé, 2021; Verdonck et al., 
2018). The regression model gave statistically sig-
nificant and negative relationships between HI and 
the NDVI and PV indices, yet positive relationships 
with the NDBI, UI, and LULC variables. The results 
obtained in our research together with the similarities 
of other studies carried out in other cities through the 
use of the different LCZs (Geletič et  al., 2018; Ver-
donck et al., 2018) may suggest that its use with the 
data from the UrbClim model may be adequate, not 
generating significant differences or a high contrast 
with the soil surface data used by the model and com-
ing from the CORINE model.

Finally, UHS are more likely to be found in com-
pact and industrial urban LCZs (LCZ 2, 3, and 10) 
than in rural and/or open LCZs (LCZ 5, 6, B, D, and 
G). It is reiterated that the LULC coverages with the 
highest proportion of UHS are built-up and farmland, 
while the coverages with the lowest percentages of 
UHS are water and vegetation. Researchers report 
that the areas with the highest temperatures include 

Table 3  ANOVA test results between LULC and LCZ

***p<0.001. R2, linear regression coefficient; F, F statistic

Source LULC UHS

Sum of square 29.1682 10.965
Mean of square 4.1668 1.5664
F 7.53 8.82
Prob>chi2 0.000*** 0.000***
R2 0.235 0.2686

Table 4  Correlation 
coefficient between heat 
stress and the different 
indices

HI NDVI PV NDBI UI LULC

HI 1
NDVI −0.367 1
PV −0.376 0.979 1
NDBI 0.185 0.678 0.778 1
UI 0.258 −0.782 −0.857 −0.948 1
LULC −0.389 0.252 0.211 −0.137 0.056 1

Table 5  Data panel results between HI and indices

**p<0.01 and *p<0.05. sd, standard deviation; β, coefficient; 
R2, coefficient of determination; F, F statistic

β ρ values SD

NDVI −2.378 0.038* 1.134
PV −4.995 0.004** 1.686
NDBI 2.114 0.018* 0.884
UI 0.538 0.483 0.765
LULC −0.168 0.001** 0.389

R2=0.19 F=8.81 Prob>chi2= 
0.000
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UHS areas due to a lack of green space and more 
impervious areas (Amindin et al., 2021; Guha et al., 
2018; Hidalgo & Arco, 2021). Therefore, it is clearly 
essential to establish guidelines and policies that 
favor urban development in conjunction with a preva-
lence of green spaces and vegetation, or compact 
areas with roofs and plant facades that minimize the 
effects of temperatures. Heat wave periods are unfor-
tunately bound to increase in frequency, intensity, and 

duration in the coming decades (Coumou et al., 2013; 
Hidalgo, 2021; Santamouris, 2020).

Conclusions

The heat stress index of Seville (southern Spain) was 
evaluated in this study using data from the UrbClim 
climate model, which is part of the Copernicus Cli-
mate Change Service program and is implemented 
by the ECMWF. The well-known LCZ classification 
of ground surfaces was used to support the evaluation 
and allow extrapolation of the results to other urban 
areas. Our findings confirm that the majority of the 
population of Seville during the summer of 2017 
lived in areas with a heat stress index classified as 
hot, then increasing to very hot under heat wave envi-
ronmental conditions. Urban hot spots are defined 
as areas with the highest levels of heat stress. This 
environment had a number of negative effects on the 
population’s health and quality of life. In addition to 
confirming an important spatio-temporal variability 
between the HI and the LCZ—which increases sig-
nificantly during episodes of intense heat—a posi-
tive correlation between the HI and the UI, LULC, 
and NDBI indices is identified, as well as a negative 
correlation with NDVI and PV. As a result, the HI 
is higher in compact and industrial LCZs (LCZ-2, 3, 
and 10) than in open LCZs and rural areas (LCZ-5, 
6, D, B, and G), indicating greater resilience to heat 
waves. In general, areas with more impervious sur-
faces and fewer green spaces are more vulnerable to 
heat stress. Overall, these circumstances highlight the 
significance of designing future urban developments 
for open LZCs with large green spaces rather than 
closed LZCs. Public administrations and urban plan-
ners should work hard to improve cities’ resilience in 
the face of future extreme heat episodes. Contingency 
and urban climate control plans must be developed 

Table 6  Correlation 
coefficient between HI and 
indices

HI NDVI PV NDBI UI LULC

HI 1
NDVI −0.403 1
PV −0.388 0.979 1
NDBI 0.097 0.559 0.691 1
UI 0.207 −0.732 −0.825 −0.934 1
LULC −0.447 0.197 0.151 −0.253 0.134 1

Table 7  Data panel results between HI and indices

***p<0.001, **p<0.01, and *p<0.05. sd, standard deviation; 
β, coefficient; R2, linear regression coefficient; F, F statistic

β ρ SD

NDVI −1.667 0.138 1.118
PV −3.684 0.017* 1.521
NDBI 1.786 0.023* 0.777
UI 0.393 0.563 0.678
LULC −0.170 0.000*** 0.038

R2=0.22 F=10.15 Prob>chi2= 
0.000

Table 8  Pearson Hi and UHS correlation coefficient

HI UHS

HI 1
UHS 0.623 1

Table 9  Data panel results between Hi and UHS

***p<0.001. β, coefficient; SD, standard deviation; R2, linear 
regression coefficient; F, statistical

β ρ SD

UHS 0.545 0.000*** 0.564
R2=0.39 F=93.39 Prob>chi2= 

0.000
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that encourage the use of green roofs and façades that 
reduce the rate of heat stress. Similarly, such meas-
ures will improve the quality of life for people who 
already live in densely populated areas. Our findings 
can be extrapolated to other cities or urban areas with 
similar LCZs. In terms of future research, new stud-
ies should extend the study period to evaluate the 
behavior of the heat stress index throughout the four 
seasons of the year, as well as analyze the evolution 
of this index over time. The severity of heat stress 
and its impact on population and urban growth in the 
coming decades must be assessed and predicted.

Limitations to the study

This study has several limitations that need to be 
discussed: (1) It would be preferable to extend the 
heat wave study period to more years in order to 
confirm that the space-time evolution of the heat 
stress index maintains the evolution observed in 
2017. (2) It is critical to conduct new studies on 
other cities in order to confirm that the results are 
similar to those reported here and, thus, guaran-
tee the possibility of extrapolation to other cities 
through the use of LCZ. This situation acquires 
great importance considering that the surface data 
input of the UrbClim model comes from CORINE 
and our research has used the different LCZs. 
Therefore, it is necessary to evaluate the contrast 
between the coverage from CORINE and the differ-
ent LCZs.
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